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1. Introduction.

In this paper we give a compact development of the basic theory of

spectral multiplicity for second-order stochastic processes. This theory gives

a representation of a large class of such processes in terms of a sum of

filtered mutually-orthogonal orthogonal increment (o.i.) processes. The

representation has been found very useful in applications to nonGaussian

signal detection [1] and to commonication through channels perturbed by

additive noise [2], [3], especially when the channel has feedback.

The theory to be developed here originated in the work of Cramer [4] and

Hida [5]. Our development is directed toward obtaining the spectral represen-

tation in the elegant form given by Hida. Several paths are available: one may

simply quote Hida's results; one may quote the Hellinger-Hahn theorem (on

which Hida's results are based) and then adapt that result to the representa-

tion of a second-order stochastic process; one may prove the Hellinger-Hahn

theorem, then do the adaptation; or one may give a direct proof of the spec-

tral representation. It is this last path that will be followed here. It has

some advantages over simply proving the Hellinger-Hahn theorem, since some

readers may be more comfortable with second-order stochastic processes than

with abstract Hilbert space; our development also gives some nice applications

of RKHS (reproducing kernel Hilbert spaces) theory. Moreover, as a

consequence of the development, we actually prove the Hellinger-Hahn theorem,

and it is stated at the end of the paper. Although the spectral

representation is well-known, there does not seem to be a readily-accessible

development that yields the form given by Hida. Since the development here is

explicit and based on RKHS theory, it may be useful in extensions to second-

order random fields.

. / it *.. *-. ,_ _ _ _
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2. Basic Definitions and Structure

Let T be an interval in M. For simplicity, we denote the end points as -•

and +4m but actually T can be any interval, finite or infinite, open, half-

open, or closed. (Xt). t in T. is a second-order stochastic process (SOSP) on

the probability space (,12.,P). (<.-> will denote the inner product in

L2 [ OP.P]. with I1-11 the corresponding norm. L t(X) will denote the closure in

L 2 (OP) of span{Xs sst}. with L(X) the closure of span{Xs, sET). All equal-

ities given here are in the sense of L2 (I.2.P); thus x = y means that x and y

are equal a.e. dP; x = ZIYn means that (Vyn) converges to x in L2 (O.P.P) as

N -+ w. The following two assumptions will be made:

(Al) (Xt) is mean-square left-continuous on T. the mean-square right

limit X + exists whenever t+ C T, and sup 1X tI ( W;
t tel"

(A2) n Ls(X) = {0).
sET

Assumption Al implies that the reproducing kernel Hilbert space (RKHS) of

the correlation function of (Xt). which we denote here as H(X). Is separable,

as is L(X). A SOSP which satisfies A2 is said to be purely nondeterministic.

These two assumptions give rise to a left-continuous resolution of the

identity, as follows. Let Pt be the projection operator mapping the Hilbert

space L(X) onto L t(X). The following result is an immediate consequence of

assumptions Al and A2.

Lemma 1: The family (Pt) has the following properties:

(a) If s > t. then PPt PtPs = P

(b) Pt = Pt- for all t such that t- E T. where P tx = lim P x for all x
s~t s

in L(X);

(c) P_. = lim P5 = 0 (operator);
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(d) P+w = lim Ps = I (identity operator in L(X)).
sTW

The limits in (c) and (d) are in the strong operator topology; e.g..

P_.x = lim P x = 0 (element) for all x in L(X).
Xi-S

It should perhaps be noted that m.s. left-continuity of (Xt) is not

necessary for left-continuity of the family {Pt. t C T). For example, let

T = [0.1]. let (Wt) be the standard Wiener process, and define

Xt = -Wt for t < '

-+Wt for t 2-
22

Then IIXt - I2= 3t + ' for t < '. so (X ) is not m.s. left-continuous at

t = '. However. C sp{X, s < Z), so Ly.(X) = Ly'(X), and Lt(X) = Lt_(X) for

t in (O.T].

The left-continuity of (Pt) is thus a weaker property than m.s. left-

continuity of (Xt). This property gives rise to other m.s. left-continuous

processes, as follows.

Lemma 2: Let y be in L(X), and define Zt = P ty. Then (Zt) is m.s. left-

continuous. Zt+ exists for all t+ in T, and sup IZtI < o. Moreover. (Z t) is
t'T

purely non-deterministic and has orthogonal increments.

Proof: The fact that (Zt) is m.s. left-continuous follows by left continuity

of (Pt). zt+ exists since the limit P t+= h P exists. Sup 1t Z II •1 Ily1. (Z d
sit StET

is purely non-deterministic since

n Lt(Z) C fn Lt(X) = O.
tET tET

If t 3 > t 2 Ž t 1 , then

EZt3-Zt2) 1 = ((P t3-P t2 )Y. tI>=0
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since (Pt -Pt )x I Lt (X) = range(P t).

Lemma 3: (Pt) has a finite or countably-infinite number of points of discon-

tinuity. If t and s are two such points, distinct, with Ptx = o. Pt+x = x and

Ps+y = y. PSy =O. then x I y.

Proof: If Pt+x = x, Ptx = 0. then x 1. L (X). v ý t. proving the second state-

ment. The first statement then follows, since separable L(X) contains at most

a countably-infinite number of mutually orthogonal elements.

3. Canonical Representations

Suppose now that one could find a family ((Zt). n2l) of mutually ortho-

gonal stochastic processes, each with orthogonal increments, such that the

closed linear span of ((zn), n 2 1; s C (-.,.t]) E Lt(Z) contains Lt(X) for all

t in T. Then, since the subspaces Lt(Zn) are orthogonal for fixed t and dif-

ferent values of n, Lt(X) C S Lt(Zn) (i.e.. x in Lt(X) => x = Xn,
nŽl

x C Lt(Ze)). Processes (Ze) having such properties are called tnrouations

processes for (Xt). The number of terms in the index set is the multiplicity

of the innovations process. We will first show that there always exists an

innovations process for (Xt) and 'then prove the existence of an innovations

process of minimal multiplicity. For example, if (Xt) has orthogonal

increments, then the minimal multiplicity is one.

N
It can be that Lt(X) C 0 Lt(Z) where (Zn) are o.i.processes. but with

n= l

the reverse inclusion not holding. A representation of the form

N
Lt(X) = * Lt(Zn) for all t in T, with (Zn) being o.i.processes, is called a

n=1

canontcal representation for (Xt).

-4-



The natural question: when does a SOSP (Xt) have a canonical representa-

tion? We note first that if T = IR and (Xt) is m.s. continuous and wide-sense

stationary, then Xt = fI e ixtdY({) where Y(N) is a PND 0 ± P.

Theorem 1: Suppose that (Xt ) is a SOSP satisfying assumptions (A-i) and (A-2).

Then (Xt) has a canonical representation.

Proof: Since the RKHS H(X) of X is separable, then by the isometry between

L(X) and H(X) (Theorem IX.2), L(X) is also separable. Thus, there exists a

nIcountable CONS (Ze) for L(X). Define elements (Zn) as follows. Let ZI= Z1 .

Given Z1Z2 ..... Zn, let Pn be the projection operator in L(X) with range space

n

equal to the closed linear span of U L(Zi). where L(Zi) = span{PtZi. t C T}.
i=I

If range(Pn) = L(X), the process is terminated. Otherwise, Z n+ is defined byzn+ n+Zn1
Zn+ = + n +l.

If the above procedure terminates for some finite n, then necessarily

n
L(X) = span( U L(Zi)). If the process does not terminate for some finite n.

i=1

suppose that y C L(X) and y I span( U L(Zi)). Then y I Zi for all i Ž I by
1i1

the construction of {Zi.ilj) and so Ilyll = 0. Thus, L(X) = span( U L(Zn).
n21

Define L t(Zi) = span(PsZi, s • t), I Ž 1. t C T. To see that

Lt(Zi) I Ls(Z ) for i s J and all st in T. one proceeds as follows. By con-

struction, Z I L(Zk) for all k s J. and PtZ = Zj - YO, where yo .1 range(Pt).
Thus, yo I Lt(Zk). and since Z I L(Zk) D Lt(Zk), PtZ. iL t(Zk}) Hence

P tZ I PsZk for all x K t and for all t in T. By symmetry, P I PsZj, for

all s ý t, all t in T. This gives Lt(Zj) I Ls(Zk) for J s k and all s~t in T,

so span{ U Lt(Z)} = S Lt(Zn) for all t in T and L(X) = S L(Zn)-
n nl nl nl n

-5-



Since L t(Z ) C L (X) for all n Ž 1 and all t in T, it remains only to

show that Lt(X) C 0 Lt(Zn) for all t in T. We already have that L(X) = S L(Zn)
n n

and Lt(Zn) I Ls(Zm) for n 9 m. all s,t in T. Thus. by the continuity of the

operator Pt.

PtL(X) = Lt(X) = Pt[S L(Z)n
n

= P t span U L(Z)
n

= span U Lt(Zn) =* Lt(Zn). 13

n n

Definition 1: Let (yt ). t E T be an orthogonal increment process on (n.P.P),

such that the right m.s. limit Ya+ exists for all a in T (except at the right

end-point). Then. py will denote the Lebesgie-Stieltjes measure on the Borel

sets of T defined by py (a.b] = llyb+ll2 
- llYa+ll2. If (yt) is also m.s. left

continuous, then p y[a.b) = tIYbll 2 - llYal 2 . L2[py ] will denote the set of all

Borel-measurable functions f: T # (extended real line) such that

Tlf(t)12 dy (t) <( . The Lebesgue-Stieltjes measure p y defined by y will be

called the spectral measure for y.

Corollarv: From Chapter VIII.the preceding theorem shows that (Xt) has the

canonical representation

Xt = :E Fi(t,s)dBt(s). all t C T.

where Lt(X) = Lt(B) for all t C T. Lt(_) = Lt(Bt). the (BI) are mutually
i=1

orthogonal o.1. processes. Bi(t) = Pt Z, FI(ts) = 0 for s > t, and Fi(t..)

belongs to L2 [dpB I] for all t C T, all I M K.
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Remark. Suppose that (yt) is such that y + C Lt(Z) for all t. where Z E L(X).

Then y = fjtf(t.s)dPsZ for all t C T. This gives flyt112 =

tLIf(t's)12 dpz(s). Thus, pjy -< ZZ. This result will be used frequently.

Proposition 1: Suppose (Xt) has the representation given in the preceding

Corollary, except that it is not known whether or not L t(B) = Lt(X) for all t

in T. This equality then holds, for all t in T. if and only if the following

condition is satisfied: For every t in T.

I fj,(sSu)gl(u)dPBl (u) = 0 for all s • t

i=l i

M2
implies X 1ggi(u) i2 dBi (u) = 0.

i=li

This condition can be restated as follows: For every t in T. and every

i • N. {Fi(s.*), s • tQ is complete in L2 [(-c.t].pB ].

Proof: Every element in Lt(Bi) has the form f .i(s)dBi(s) for some gi in

L2 [N IJ, from Chapter VIII. If Lt(B) s Lt(X) for some t C T. then there
N

exists an element Zt = 2J f'jA(s)dBi(s) in Lt(B) such that Zt I Lt(X). But

N

then, for s K t, (Zt.Xs> = I f~jF(s.u)gi(u)dpB (u). Thus, in order that
i=1 I

LtB3) s Lt(X), it is n•ecessary (and. obviously, sufficient) that there exist

M
elements (gi. i K MN, gi C L2 (pB), such that I fIgi(u)l 2 dBi (u) i 0. while

N
I J4 sug 1 udI (u) = 0 for all s • t.

1=1 I

This proves the statement for the first condition. The alternate (equiv-

alent) condition then clearly holds, using the fact that every element gi in

L2 1)B J defines an element In Lt(Bi) having the representation f gl{S)dBi(s).
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4. Proper Canonical Representations

Theorem I proves the existence of a canonical representation for (X ).

The Corollary gives a very useful representation of Xt for each t C T, when a

canonical representation exists. However, the number of terms, N, appearing in

the series is not specified. nor do the measures (pBi ) have any particular

relationship to each other, nor is anything said about uniqueness. These

points will all be addressed as we now proceed to obtain a proper canonical

representation.

Definition 2: Let 10X) be the closed linear span of all elements x in L(X)

such that for some discontinuity point ti of {Pt. t C T). P tx = 0. P sx = s

for s > ti. Define the subspace T(X) C L(X) by {(X) = *{X) the set of all

elements y in L(X) such that y 1 S(X).

We have already seen that right-m.s. continuity of (Xt) at t0 Is not a

necessary condition in general, for Pt = P However. if (Xt) is an OIP,
t0 06

then right-m.s. continuity of (Xt) at t0 is a necessary and sufficient

condition for Pto+ = Pto. One notes that for t K to, for (Xt) an OIP.

EIXt6+ - Xto2 = E IXt+ - Xto + Xto - Xt1 2

IX t - X t012 + EIX - X 12 Ž EIX - X
-lt÷ -to +lt -t 0 0o-to2

From a Hilbert space viewpoint, X is the unique element in Lt (X) which is

nearest to Xt÷ when (Xt tis an OIP. In the general case, of course, this need

not be true, so that Xto can belong to Lt (X) even though EIXto÷ - X to2 =

0o0I0 0

Ox tj+ X 0 1 -8-0



Lemma 4: Let Pt+ be the operator in L(X) defined by Pto+U = lim Psu. Then
0 sit0

Pto+ is well-defined for each tOE T (except the right endpoint) and Pt is a

projection operator.

Proof: See Theorem IV.lO.

Proposition 2: x E T(X) (=> t -. IlPtxIl is continuous on T.

Proof: Note first that t -* lPt xlI continuous at t0 is equivalent to P tx -# P x

as t 4 to. since (Pt) is already half-continuous on T and for t > to,

liptx - PtoxI 2 = lip txl 2 - lI to[12. Thus, t -+ li[P txl continuous on T is

equivalent to Ptx = Pt0+x for all t0 such that to+ Is defined. Now. suppose

that t -+ lPtxIl is continuous on T and that Pto+y = y. PtJ -y 0. Then for

t ) to0 (x,y> = <x.P y> = <P txy>. Since P tx = Pto+x. this gives

<x.y> = <x.P tP Y> = <Pt0Xy = <Pxty0 x.y> = <x.Ptoy> =0. Thus. x (X).

Conversely, suppose that x E T(X), and that t liPt xlI is discontinuous at

t = t. Then liPtX[l = liP xII + a, where a > O. LetX -1 Ptx - P x; thenr to6+ to0 0o+ to

Io1= n 10 s = xr. P(t 0 o*= 0o x 0 belongs to S(X).

[ -- I 12Then <xX =x.P +X>=<P x )= - I 1 = a. tThis contradicts

x I o(X).

Proposition 3 : Suppose that Z C T(X). Then Lt(Z) = S Lt(Zn), N • , where
n=l

Lt(Z) = span(PsZ, st; ((Pt Z n), n~l) is a family of mutually orthogonal m.s.

continuous processes, each with orthogonal increments.

-9-



Moreover. if y C L t(Z). then there exists (Fn(t.-), n • M) depending on y
t

and such that y = 1 ftF(ts)d(PsZn)
i= -W

where Fn(t.s) = 0 for s > t and Fn(t.-) belongs to L2 [djznw . for each t in T.

Proof: If Z C V(X), then by Prop. 2. t -* UIPtZII is continuous, so (PtZ) is a

purely-nondeterministic m.s. continuous process. Moreover. IIPtZII 2 IiZII 2. all

t in T. The existence of a canonical representation then follows from Theorem

1. The representation of y in L t(Z) follows from t1- previous results on

SOSP. 0

Suppose that ti is a discontinuity point of the family {Pt, t C T) of

projection operators. We use M(t1 ) to denote the dimensionality of the sub-

space of L(X) spanned by the elements y which satisfy Pt +y = y. Pt Iy = .

M(t1 ) is thus the multiplicity of the eigenvalue I for the projection operator

PtI+ - Ptt.

Proposition 4: For each t in T.

N ~M(ti)
Xt = F (ts)dn (s) + <Xt.÷t >4 j

n= tti(<t J=1

where (B n, n~l) Is a mutually orthogonal family of o.i. processes, each m.s.

continuous; F(t.s) = 0 for s > t and Fn(t.-) is in L2 [dpB ] for n '1 1; (ti)
n

are the discontinuities of (Pt). and the {'ij' j • M(ti). iýI) are o.n. random

variables such that for all discontinuity points ti, P t+ 4 Pti.

Ps I~j= 4lj for s > ti

P 4 I'P = 0Pti ii

for j = 1.2.....M~ti).

- 10 -



Proof: Immediate, using Prop. 3 and the definitions of C(X) and S(X).

Proposition 5: For the representation of Xt given in Prop. 4, and each

discontinuity point ti

l< ti+,qijI >1 0 all j • M(ti)

where M(ti) and {fi*,J j • M(ti). i Ž 1) are defined as in Prop. 4.

Proof: If not, then since qiJ range(Ps) for s • ti. <X.Opij> = 0. all

s < ti; if also <Xti+,4ij> = 0 then P ti+ij -0. since range(P t+)=

fn Ls(X). This contradicts Prop. 4.
s>ti s

Corollary: Let (Zt) be the projection of (X ) onto T(X). Then (1IZ t1) has jumps

at all ti: the jump at ti has magnitude equal to

M ( t i 1)1 
22: la t 12.j

J=l i

Proof: The sum is the squared norm of the projection of (Xt) onto the subspace

spanned by the eigenvectors of Pti+ - P .

Proposition 6: Suppose (Xt) has orthogonal increments. If Zt is the

projection of Xt onto S(X). then t -* IIZtl1 is a step function.

w(ti) . >12
Proof: Consider X la xt-x s+ij> for t > s Ž tI. As (Xt) is PND and has

j=l

orthogonal increments. E(X t-x S) = 0 if u C Ls(X). so that <Xt-X sij> 2 = 0

for t > s > ti. Thus, for t > tit

•[(ti) ]4(ti) M~ti)

z Ix .Pij>12 = 2 I<xt-xt ++xt +.'pij >12 = x I<xti+.+ij>12.
J=l J=l I j=l I

- 11 -



Corollary: If (Xt) has orthogonal increments, then for each discontinuity

M(ti)
point ti the value of E (X ,iP >4 is independent of t for t > ti and is

j=l

zero for t • t1.

Lemma 4: Suppose Yt E L t(X) and that Yt is orthogonal to S(X). Then there

exists a family (Bn) of mutually-orthogonal m.s. continuous processes, each

with orthogonal increments, and functions {Fn(t,.); n•M} on T such that

(a) the measures (pB ) are ordered by absolute continuity:
n

n>> PB for n • N;ttn Bn+I

(b) F n(t.s) = 0 for s > t and Fn(t.,) belongs to L 21PB I for all n • M;
n

Mn

(c) Yt = I f- Fn(t.s)dBn(s) (if M = co, then the equality holds as a
n=l

limit in the mean as -*C ).

Proof: We need only show the existence of a representation (c) having property

(a). since the existence of a representation as in (c) and (b) has already

been shown.

Let (Zn) be orthogonal elements in 'e(X) such that P•Lt(X) = Lt(Zn).
nŽl

all t in T, P• the projection of L(X) onto T(X), as in Theorem 1. Note that

P (X) = span{P•Xs. s~t}. Let B1 = Z a Z , where Jail i 0 for all i Ž 1
span{P~X. 1 - iŽ1 i i' r I1

and 1a 12 11Zill 2 < m. Then, denoting Fz as the map t -* IIPtZII2 .
nŽl

F B I(t) = UIP tB 1I 11 2 laI 2 1IptZiII 2 = ,2F IcxIF (t).

1 IN 1Ž1

Thus' MBI >> PZ for i Ž 1. In fact, PBl >-> pv for all v in V(X). since any

such v has the representation v = InPnv. pn the projection of L(X) onto L(Zn).

and jpnv - Zn by previous results (see the Remark following Theorem 1).

- 12-



We thus have B1 in IC(X) such that 'iB I >» y for all Y in T(X). Let L(B1)

be the orthogonal complement in I(X) of L(B 1 ). Then L(B 1 ) = ,nL(yn). where

(yn) is constructed from an o.n. set in L(BI)1 . Define B2 = 2 ia 2 iYi. where
2 i2

Iaji > 0 for all i. and _T la i1 Iy'1I2 < .. Then >> for all Y in
20Ž1 21

112L(B1) . and tB1 >7 >t2

Continuing in this way, we obtain a sequence of elements {Bn, nM) such

that PB n >> PBn1for n 2 1. and Ls(BnJ ) Lt(Bm) for n s m, all s and t in T;

the last statement is proved as in the proof of Theorem 1. Moreover, since

{L(B n). n2l) are orthogonal subspaces of C(X) and C(X) is separable, there

exists an at-most countable number of such (Bn), and by Zorn's Lemma C(X) -

M M
* L(Bn) where B can be infinite. This gives PLt(X) = * L t(Bn ) for all t in

n=l n=l

T. Thus, if Yt C P•Lt(X). we have that Yt= 1 t where yt is the projection

of Yt onto Lt(Bn). Since yn f J'(t's)dPsB with Iynl2 = T2dPB
nn

n

the representation of part (c) follows. 0

A distinguishing characteristic of the measures (lAB ) defined in Lemma
n

is that PBI >- py for all Y in T(X), B2 >> » y for all Y I L(B 1 ). and

" "1 >> Py for all Y I SnL(B.). Such a set will be called a maximal chain of

measures. The preceding result shows the existence of a canonical

representation such that the measures defined by the projection of (Xt) onto

T(X) form a maximal chain. Nothing has been said about uniqueness. This will

now be addressed.

N
Lemma 5: Suppose Lt(X) = 8 Lt(Zn) for all t in T with p>Z -7 pZ for nl.

n= 1 n n+1
N I

where (Z ) is a maximal chain of measures, M • m. Consider S L(Y ) C L(X).
n i=1

- 13 -



where p i >> P » +l for i Ž 1. Then N • N and p <-< A for I K N.

Proof: Clearly p Yi <4 Pz1 for all i K N, since Z is a maximal element. We can

assume N ( m. Let k K min(N.M) be the smallest integer n such that Pyn << PZn

Is false (we will show that no such n can exist). Then pyk has the Lebesgue

decomposition P k = Nk + °k where Nk <4 I a kp. Thus. there exists a

Borel A C T such that Ok(A) = ak[T], %L(A) = 0. We will show that ak[T] = 0.

For I < k. AZ >> P i > Pk >> lk " Define u = TI (s)dP Z I < k.

and v, = fT1diy J (s)dPsYi, i K k. Since vi C L(Y ), we have v I vj and

Pt v . PtVj for i f J, I,J • k. Similarly, u 1. uj and Ptui 1  Psuj for all

s,t in T and iJ • k-I such that i s J. Note that pui = ak and pvi = 0k for

i < k.

k-1
Claim: G L(ul) - {x in L(X): pLx << « k)"

I

Proof of Claim: Let W C L(X), pW << Ok" Then W -T- I wi = fT gi(s)dPsZi.

Fw(t) - •1 Fw (t). Fw (t) = f igJ2dpz i. where F (t) = lUPrvl12. From these

relations and p -hik. F w(t) = it g djZ ftlhil2dak for all I K M.

However, for I Ž k. % >> » .Zi while by hypothesis ak I %,k so ak I PZ for

I Ž k. Now. ftlgII2 dpZ = ftlhil 2dLdk for all t in T. all i • M; for i 2 k.

I t I A hi 2dak = j~t~h 2 dok, all t. while ft-g-1 O2IdP 0. all t. since

%.,(A) = 0. Since pw [A fl (--ot)= = f.:jg1i 21xdPz = JLhi 2IAda k, hI = 0
t b1 2 d ko2d t ]2di

a.e. dak. 2 k. But since tt-.dkg, we

- 14-



have gi = 0 a.e. du-, i Ž k. This gives 11w 112 = 0 i Ž k. since
I Iz

Ilw1 112 =fIgl2duI. and so W = k i, with F (t) = ftlg il 2j±d = ft 1h&2dak
1 1 I-I

ftihi- tL2 -,-- z; since the Radon-Nikodyn derivative diW /dLzi is unique up to
-W t4Z 1 1 1

a.e. dpZ equivalence, gi = Ihji[dk] [sign (gi)]. a.e. dp.Z
I pZI

We now show that w1 E L(ui). where ut = fT k --] (s)dPsZi We have Pu =
I I fTI-IpZ I*tI

ft _ a fkk%(s)dP Z and so

fTjh,(s) I(sIgn hi) (s)dPsUi

= fTlh(s)l(sign gj)(s) (s)dPZi = 9T gi(s)dPZl = W"

N k-I
Since wi as in L(ui), W = T wi belong to * L(ui), so that

1=1 1

k-1
{x C; L(X): x -<< ak C 0 L(ui).

1
k-i

To prove the reverse inclusion, if W = f T hidPtui =
1= 1

k-i .duk,0 k-I t 2
(by definition of u1 ) 2_ fT h idpZ-I (s)dPsZI, then FW(t) = 2 f hidak, so

-=1 T I= -

«w << ok. The Claim is proved.

By the definition of vi, it is clear that 'LvI= ak for I • k, since

Pt ft [ J ? s)dPsY
t I fý 1 7J ~DIJ s j

Thus, we have v I << « k for I • k and v, C L(X). so by the Claim,

k-i
v1 E C L(ui) I = 1.....k.

1

- 15 -



k-i
This requires that v = 2: ST CIj(s)dPsuj all I ý k where

J=l
k-i1
k-I I T Icij(s)12dJu (s) < c" i K k. Since the definition of uj gives u -k

J=I J jU
k-1

for J • k-1. we have Fv(ti)= (-•,tJ = Ok(-tJ = d ft icIJ(s)12 dkk(S)
SI IJ=

for all t in T. all i K k. Thus,

kIE IcC(s)l 2 -= a.e. d-k(s) for i = I.....k.
J=i

Similarly. since vi C L(Yi), vj C L(Yj) and L(Y1 ) L L(Yj). giving Psvi J. Ptvj

for iJ K k. i pe J and all s,t in T, one has for I p1 J

0 = EP tv P-t

= (since EPsUmP t = 0 for m pe m'. m.m' K k-1. all st)

k-I _

z t C(sm)C 74Cu (s)
m=i -m m. j d

k-1 _

= (since pU= k-i) -- Cim(S)C jm(s)dk(S)

k-I
ftI C (s)C=-4ol mJ-i im s)jm--s)dk(S)'

all t in T. Hence
k-1

I C im(S)C jm(s) = 0 a.e. dok(s) for I i J.
mn=l

We now have a family of k vector-valued functions. CV. each C having k-i

components. Ci(s) = (CIM(s)..... Ci.kil(s)) such that a.e. dok(s)

k-i 
1I-1 ICiU(s)I 2 = I i=

j=i

k-i
and-x-lCis)c (s) = 0 i p1 M.
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Suppose that the measure ak gives positive measure to some Borel set in

1'. Then. for all s in a set of positive ok measure, we have a set of k

elements in Ek-1 the ith being (Cil(s) .C1.k-l(s)) which are orthonormal.

Since any orthonormal set of elements belonging to E k- can contain at most

k-1 elements, this contradiction establishes that ak is identically zero.

Hence, we have (from the original Lebesgue decomposition of p k) P P < k

Thus,

Pyi << 11Zi for i _ min(N.M).

Suppose now that M < N. Define

I1 = fT [dNJ I s IN

We then have ip uI = pyM+li p vi and

M = (w C M L(Zi): M << .M+11*

the equality being proved as in the case of the Claim, replacing ak by pýyIl

Since pV I << P N+I for I • M+l, this gives

M+I M

* L(v 1 ) C @ L(ui).
I I

Proceeding in the same manner as for ak previously, one obtains that p M+I[T]

must equal zero. This shows that N M N. proving the theorem.

- 17 -



Corollary: Suppose that

N

L(X) = ON L(Z) S D

where (PtZi) are m.s. continuous processes and have ordered spectral measures,

Pz zn . n < M. Then if

N
L(X) = SI L(Yi) 0 9

where Pyn >> py n I n , it is necessary that N = N and «yn << p n << Py n

n =+n=1 ..... N.

Proof: It remains only to show that if (Xt) is m.s. continuous and

K
L(X) = S L(Zi). with .z >> n < (. then Z1 >> py for any y in L(X).

i=l n %+I, 1

But y in L(X) requires that y =IN J¶. hhdP Z, so Fy(t) =i=l f•thl 2dFz
i= 0i si y

and since PI << Pz for all i 1. one has that Py << Pz 13

Lemma 5 makes no assumptions on the discontinuities of (Pt); in fact,

those discontinuities (If any) do not enter into the representation. Thus.

one obtains another corollary to Lemma 5. stated in the following theorem. It

is due to Cramer [ j and the representation it contains will be termed

"Cramer's representation."

Theorem 2. Suppose that (Xt ) is a SOSP satisfying assumptions (Al) and (A2).

Then there exists {Z n. n Ž 1) in L(X) such that

n
N

L t(X) = S Lt(Zn)
i=1

>> Pzn . all n < (. If also there exists (Yn n n 1) in L(X) with

N
Lt(X) 0= L t(Yn for all t in T.

is8



andj n>> ».n+1 for n < N. then N = M andZn << Py for 0 < n < M.an n n•ln+l •n+l Zn+l

The unique number M (0 < M < -} is the multipltcty of (Xt). Any x in Lt(X)

has the representation

M t
x = I f Gn(t.s) dPZ.

i=l 0

where Cn(t.-) is in V2[pZ ] and n<'l(t s)dpZ W
n n

The next theorem is essentially due to Hida [ J; the representation given

will be termed "Hida's representation".

Theorem 3: Let (X t). t C T (an interval) be a second-order stochastic process

satisfying assumptions (Al) and (A2). Then

X ~t 
+ d ( ti )

-= n ftFn(t + X I fij(t)Qij
Xt =I-W n 'sdnS <it J=l

for all t in T, where the equality holds in L2 (7.'13.P)' and with the RHS having

the following properties:

(1) (Bn) is a mutually-orthogonal family of m.s. continuous orthogonal-

increment stochastic processes, with spectral measures (pB ) satisfying
n

B n >> PB n+1 for nVl.

(2) Fn(t~s) = 0 for s > t and Fn(t.) belongs to V2 CB ]. all t in T. all
n

n 1Ž . and I fIFn(t.S)12dPB (s) < co for each t in T.
n=l n

(3) (ti) are the discontinuities of {Lt(X). t C T),
__________ _ L__ 0, 1. P)

Lt(X) = span(Xs. s Q tL ; i.e.. those points ti such that
Lt(x) j n Ls(X)

I Ott
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(4) 1 • d(t 1 ) • , for each t,.

(5) (Q1J. j g d(t1 ). I Ž 1) are o.n. elements in L2(r./PP).

(6) Qij and Bn(t) are orthogonal in L2 ((7,pP), for n • N, all t E T.

J 9 d(ti), I Ž 1.

(7) fIj(t) = (Xt.QIj > all t. (1,J). and

(8) L (X) = 6NL(B 0sa(
L LtBn) span{QJ". j 9 d(tI). ti < t).

Moreover, if (Xt) has a representation

d(t 1 )
xt = IN. ft F*(t,s)dB'(s) + 2: 2 f (t)Qij

1 tFt .) ( . J=l iI

where (F'), (B'), (Qar), (f) have properties (c)-(i)u then N = N. the
n n

measures PBand P1B. are mutually absolutely continuous for n • N,
n n

F'(t.s) = F (ts)-n a.e. dpB., n • M, and Qj = AQIj for j 9 d(t,). each
n n dPB. iniin

d( ti)

Y where Ai is a unitary matrix in R

The aulttplictty of (Xt) is then defined to be sup(N, dim S(X)).

To see that the multiplicity as defined in Theorem 3 is the same as that

defined in Theorem 2. let ({Qi j. .M (ti)' discontinuities (ti) of (Pt)) be a

c.o.n. set in S(X) such that P tIQJ = 0. Pt i+Qj = Qij j g N(ti). For each

Ij. (PtQIj) is a PND 01, with p. ij giving measure one to ti, pA ij{T}c = 0.

Let (B) be such that C(X) = G NfL(Bn). Define (Z ) by

n n n

Z n B n + Y n n9min(N. dim X)

-B nif dim S(X) ( n • N

= Y if N < n 9 dim T(X).
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M(t.)

where n < - in all cases. The sequence (Y ) is given by Y = I i = a1 Qi

where the ((a j): n 1, 1j M(t, all discontinuities ti) are defined as

follows

M(ti) 2

I J=l

al $ 0, all iJ;

Yn+l 1sp(Y1 .... ).n all n > 1;n+l

at n 0 if and only if Q f sp{Y1 .Y 2 .. Y n n > 1.

To proe thatL(X) MVd im(X

To prove that L(X) = *l=1m S(X) L(Zi), it is sufficient to show that S(X) =

sp(Yn. n Ž 1). Since (QiJ) is a c.o.n. set in I(X). S(X) = sp{Yn, n 1 )} if

and only if Q C sp(Yn, n 2 1) for all ij. Let (Q' ) be the set of all (Q

such that (Qij) is not in sp(Yn, n 2 1). Then, by definition of (Y.), there

exists an element Y = ZlJaijQij in fYn" n 2 1) where aij s 0 if and only if

Qij C (Qij: Qij f sp(Yn, n Ž 1)). This requires that Y 1 Q'j for all Q j, a
ii ijn ij 1

contradiction.

The representation given in Theorem 3 is called the proper canonitcal

representatton of (Xt). Although the elements (Bn), (Fn). (Qij), and (flj)

appearing in the representation are not unique, their number is unique and

those appearing in any given proper canonical representation can be obtained

from the corresponding elements of any other such representation.

The space T(X) consists only of {(} if (Xt) is m.s. continuous. If (Pt)

has a discontinuity at to, then necessarily (X ) is not m.s. right-continuous

at t0; we have seen that the converse does not hold. In order for (Pt) to have

a discontinuity at to, it is necessary and sufficient that n L (X) contain a
s>t0
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non-zero element orthogonal to L (X).Lto

Corollary: Suppose that (Xt) is m.s. continuous on T. Then for all t In T.

N t
= Z J- F n(t.s)dBn (s) where {Fn(to), n • M) and (B n, n Ž 1) are as in
n=1

Theorem 3. The covariance function of (Xt) has the representation

n= 1  n n.tnu)F(s.u)dpB (u) for (pB . n K M) defined as in Theorem 3.

If T is a finite interval. T = [a.b]. then the covariance operator RX of (Xt).

RX: L2 [a.bJ -+ L2 [a.b]• has trace equal to Trace R = EfbIXti 2 dt -

M Jbst IF(t.u) 12

n=l n n

Proof: Follows directly from Theorem 3.

The development as given by Hida [5] replaces assumption (Al) with the

assumption that L(X) is separable and that the m.s. limits Xt+ and Xt_ exist

for all t. (X) is then defined as nl Ls(X). The projection operator P is
LW(Xi s t

the operator with range equal to L*(X). The family (P *. t C T} is then a right-

continuous resolution of the identity. This defines a self-adjoint linear

operator T in L(X). T = f_ dP *" The Hellinger-Hahn Theorem [6. p. 247 ff.] is

then applied to obtain the proper'canonical representation.

5. General Formulation of Spectral Multiplicity

The preceding results were derived for a second-order stochastic process.

However, they can be formulated purely in terms of a Iven self-adjoint

operator in Hilbert space. The following result contains the Hellinger-Hahn

theorem and related results ([6], Sec. VII.2), and consequences.
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Theorem 4: Let T be a self-adjoint bounded linear operator in the real

separable Hilbert space H. Let {P X A E IR) be a left-continuous resolution of

the identity determined by T. Then:

(1) H = 1 6 S. where 9 is the closed linear span of all eigenvectors of T,

and 1= -1;

(2) For any x in T, the map X -+ UPAl xl is continuous;

(3) There exists an orthonormal basis {e * n Ž 1} for T such that wn >> wn+l»

all n Ž 1. where pn is the Lebesgue-Stieltjes measure on IR determined by

the non-decreasing function A -+ UP ene112;

(4) If S A H. {vn. n Ž 1) is any other basis for IC such that vn vn+1or

all n Ž 1. where vn is determined by X -* UPAXVnl2, then vn - An for all

n > 1;

(5) Suppose that T has dimension M Ž 1, and that {en, n Ž 1) and fpn' n Ž 1)

are as in (3). Let { n. n Ž 1) be the set of distinct eigenvalues of T,

let m(n) be the dimensionality of the subspace spanned by the etgen-

vectors for the elgenvalue An, and let (unI, i • m(n)} be orthonormal

eigenvectors corresponding to AX. Then, for any x in H and any A in IR.

there exists a family of Borel-measurable functions {Fn(AX,). n • M).
M2

depending on x. such that I J-3 IFn(AXs)I 2 dJn(s) < -. and
n=l

N m(n)
PXx = - Jj ?Fn(A.s)dPsen + I E <un x>Uin

n=l X <A I=1
n

Each summand in the first term on the RHS of this expression is the

K-1
limit of partial sums of the form 2 F (A .s.)[P - P s]e n. where

k=O kk+1

s < si+1 for 0 K I K K-1, sk C (Sk'Sk+l]. and the limit is taken as

supfsk+l - Sk: 0 : k K K-1) -#0 and sK. so -
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Proof: This theorem is simply a reformulation of the preceding results on the

spectral representation of a purely deterministic m.s. left-continuous SOSP,

replacing L(X) by H. The only use made of the assumptions (Al) and (A2) was to

show that L(X) Is separable and to establish a left-continuous resolution of

the identity, the family {P t t C 1R} of Leumm 1. Mean-square left continuity

of the stochastic process (PtZ) for Z in L(X) corresponds to left-continuity

of t -# lipZIl.

In the present theorem, the given operator T has a left-continuous

resolution of the identity. The space H is assumed to be separable. The

theorem then follows from Theorem 3 above.
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